Abstract

Conventional reinforcers phasically stimulate dopamine transmission in the nucleus accumbens shell. This property undergoes one-trial habituation consistent with a role of nucleus accumbens shell dopamine in associative learning. Experimental studies with place- and taste-conditioning paradigms confirm this role. Addictive drugs share with conventional reinforcers the property of stimulating dopamine transmission in the nucleus accumbens shell. This response, however, undergoes one-trial habituation in the case of conventional reinforcers but not of drugs. Resistance to habituation allows drugs to repetitively activate dopamine transmission in the shell upon repeated self-administration. This process abnormally facilitates associative learning, leading to the attribution of excessive motivational value to discrete stimuli or contexts predictive of drug availability. Addiction is therefore the expression of the excessive control over behavior acquired by drug-related stimuli as a result of abnormal strenghtening of stimulus-drug contingencies by nondecremental drug-induced stimulation of dopamine transmission in the nucleus accumbens shell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.