Abstract

BackgroundDrought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. Variation in intensity and severity of drought from season to season and place to place requires cultivation of rice varieties with different level of drought tolerance in different areas. Multi environment evaluation of breeding lines helps breeder to identify appropriate genotypes for areas prone to similar level of drought stress. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments.ResultsARB 8 and IR55419-04 recorded the highest drought yield index (DYI) and are identified as the best drought-tolerant lines. The proposed DYI provides a more effective assessment as it is calculated after accounting for a significant genotype x stress-level interaction across environments. For rainfed areas with variable frequency of drought occurrence, Mean yield index (MYI) along with deviation in performance of genotypes from currently cultivated popular varieties in all situations helps to select genotypes with a superior performance across irrigated, moderate and severe reproductive-stage drought situations. IR74371-70-1-1 and DGI 75 are the two genotypes identified to have shown a superior performance over IR64 and MTU1010 under all situations.ConclusionFor highly drought-prone areas, a combination of DYI with deviation in performance of genotypes under irrigated situations can enable breeders to select genotypes with no reduction in yield under favorable environments compared with currently cultivated varieties. For rainfed areas with variable frequency of drought stress, use of MYI together with deviation in performance of genotypes under different situations as compared to presently cultivated varieties will help breeders to select genotypes with superior performance under all situations.

Highlights

  • Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems

  • The objective of our study is to develop a drought yield index (DYI) that takes into account yield under both moderate and severe drought stress for the identification of breeding lines with superior performance over current cultivated varieties

  • The genotypes evaluated in this study were 134 advanced breeding lines of 105–120 days of maturity duration generated from crosses of popular highyielding varieties with a diverse array of donors for drought tolerance, and traditional drought-tolerant landraces

Read more

Summary

Introduction

Drought is the most severe abiotic stress reducing rice yield in rainfed drought prone ecosystems. From a set of 129 advanced rice (Oryza sativa L.) breeding lines evaluated under rainfed drought-prone situations at three locations in eastern India from 2005 to 2007, a subset of 39 genotypes that were tested for two or more years was selected to develop a drought yield index (DYI) and mean yield index (MYI) based on yield under irrigated, moderate and severe reproductive-stage drought stress to help breeders select appropriate genotypes for different environments. Rainfed lowland rice ecosystems are highly variable and unpredictable in nature (Yoshida 1977). Uncertainty in the timing of rainfall and variability in its intensity and its distribution cause either flood or drought stress in rainfed lowland rice production ecosystem

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.