Abstract

Drought is one of the critical conditions for the growth and productivity of many crops including mung bean (Vigna radiata L. Wilczek). Screening of genotypes for variations is one of the suitable strategies for evaluating crop adaptability and global food security. In this context, the study investigated the physiological and biochemical responses of four drought tolerant (BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7), and four drought sensitive (BARI Mung-1, BARI Mung-3, BU Mung-4, BMX-05001) mung bean genotypes under wellwatered (WW) and water deficit (WD) conditions. The WW treatment maintained sufficient soil moisture (22% ± 0.5%, i.e., 30% deficit of available water) by regularly supplying water. Whereas, the WD treatment was maintained throughout the growing period, and water was applied when the wilting symptom appeared. The drought tolerant (DT) genotypes BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7 showed a high level of proline accumulation (2.52–5.99 mg g−1 FW), photosynthetic pigment (total chlorophyll 2.96–3.27 mg g−1 FW at flowering stage, and 1.62–2.38 mg g−1 FW at pod developing stage), plant water relation attributes including relative water content (RWC) (82%–84%), water retention capacity (WRC) (12–14) as well as lower water saturation deficit (WSD) (19%–23%), and water uptake capacity (WUC) (2.58–2.89) under WD condition, which provided consequently higher relative seed yield. These indicate that the tolerant genotypes gained better physiobiochemical attributes and adaptability in response to drought conditions. Furthermore, the genotype BMX- 08010-2 showed superiority in terms of those physio-biochemical traits, susceptibility index (SSI) and stress tolerance index (STI) to other genotypes. Based on the physiological and biochemical responses, the BMX-08010-2 was found to be a suitable genotype for sustaining yield under drought stress, and subsequently, it could be recommended for crop improvement through hybridization programs. In addition, the identified traits can be used as markers to identify tolerant genotypes for drought-prone areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.