Abstract

Abiotic stress such as drought seriously endangers maize growth and production. Glycine betaine (GB) accumulation in transgenic crops following heterologous overexpression of the BADH gene has been shown to dramatically improve the tolerance to salt, cold, and oxidative stresses, but it is unclear if GB accumulation leads to improved drought tolerance of maize. In this study, we analyzed the drought tolerance of high-generation BADH transgenic maize inbred lines at different growth stages using the hyperosmotic solution and water-withholding methods. Molecular detection revealed that exogenous BADH was successfully introduced into the maize plant genome and overexpressed in three transgenic maize inbred lines. Under osmotic stress, transgenic maize held better germination ability than the unmodified Dan988 (WT) line. In addition, transgenic maize contained higher levels of antioxidant enzymes and osmotic regulatory substances compared with WT, and thus accumulated less harmful substances and this alleviated the negative effects of drought. We used the membership function method to quantify the drought tolerance and found that Dan988-BADH-4 showed the best tolerance, followed by Dan988-BADH-2 and Dan988-BADH-1 while WT ranked lowest. This was consistent with the statistical analysis of the experiments. From the indoor and field survey, we observed that the agronomic traits of transgenic maize were not affected by the overexpression of BADH. In conclusion, BADH overexpression in maize is beneficial for drought tolerance and the three transgenic maize lines can be used for further breeding experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call