Abstract

Vertical stratification of epiphytes generally has not been reported for dry forests. For two epiphytic Crassulacean acid metabolism bromeliads that segregate vertically, it was hypothesized that different potentials for photoprotection or shade tolerance rather than drought tolerance is responsible for the observed stratification. The light environment, capacity for photoprotection, germination response to light quality, and responses to light and drought were thus examined for Tillandsia brachycaulos and T. elongata. Vertical and light-environment distributions differed for the two species but photoprotection and photodamage did not where they occurred at similar field locations; T. brachycaulos had a higher pigment acclimation to light. Tillandsia brachycaulos had higher acid accumulation under low light as opposed to T. elongata, which responded similarly to all but the highest light treatment. Tillandsia brachycaulos maintained positive total daily net CO(2) uptake through 30 d of drought; T. elongata had a total daily net CO(2) loss after 7 d of drought. The vertical stratification was most likely the result of the sensitivity to drought of T. elongata rather than differences in photoprotection or shade tolerance between the two species. Tillandsia elongata occurs in more exposed locations, which may be advantageous for rainfall interception and dew formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.