Abstract
Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.
Highlights
The world-wide soybean production in 2015/2016 will be 320.15 million metric tons (Global soybean production.com, 2016)
Recent advances in current understanding of the effects of drought on soybean growth have predominantly been based on evaluation of above-ground traits, with flowering and seed stages sensitive to drought stress
This bacterial infection thread allows rhizobia penetrating deep into the dividing cellular profile resulting in a new organ, the N-fixing ‘nodule,’ housing infected rhizobia replicating within nodule cells (Oldroyd et al, 2011; Oldroyd, 2013)
Summary
The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.