Abstract
Four selected Amaranthus tricolor cultivars were grown under four irrigation regimes (25, 50, 80, and 100% field capacity) to evaluate the mechanisms of growth and physiological and biochemical responses against drought stress in randomized complete block design with three replications. Drought stress led to decrease in total biomass, specific leaf area, relative water content (RWC), photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll ab), and soluble protein and increase in MDA, H2O2, EL, proline, total carotenoid, ascorbic acid, polyphenols, flavonoids, and antioxidant activity. However, responses of these parameters were differential in respect to cultivars and the degree of drought stresses. No significant difference was observed in control and LDS for most of the traits. The cultivars VA14 and VA16 were identified as more tolerant to drought and could be used for further evaluations in future breeding programs and new cultivar release programs. Positively significant correlations among MDA, H2O2, compatible solutes, and non-enzymatic antioxidant (proline, TPC, TFC, and TAC) suggested that compatible solutes and non-enzymatic antioxidant played vital role in detoxifying of ROS in A. tricolor cultivar. The increased content of ascorbic acid indicated the crucial role of the ASC-GSH cycle for scavenging ROS in A. tricolor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.