Abstract

AbstractAbiotic stress tolerance in plants is said to be induced by pre‐stress events (priming) during the vegetative phase. We aimed to test whether drought priming could improve the heat and drought tolerance in wheat cultivars. Two wheat cultivars “Gladius” and “Paragon” were grown in a fully controlled gravimetric platform and subjected to either no stress or two drought cycles during the tillering stage. At anthesis, both batches were either subjected to high temperature stress, drought stress or kept as control. No alleviation of grain yield reduction due to priming was observed. Higher CO2 assimilation rates were achieved due to priming under drought stress. Yield results showed that priming was not damage cumulative to wheat. Priming was responsible to alleviated biochemical photosynthetic limitations under drought stress and sustained photochemical utilization under heat stress in “Paragon.” Priming as a strategy in abiotic stress alleviation was better evidenced in the stress susceptible cultivar “Paragon” than tolerant cultivar “Gladius”; therefore, the type of response to priming appears to be cultivar dependable, and thus phenotypical variation should be expected when studying the effects of abiotic priming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.