Abstract

AbstractUnder global climate change, more frequent and widespread droughts have dramatic impacts on the water and carbon cycles. Water use efficiency (WUE) is a commonly used indicator reflecting the trade‐off relationship between carbon sequestration and water consumption. Therefore, this study aims to clarify the variations in WUE and the effects of drought on WUE in sensitive alpine meadows on the Tibetan Plateau. Based on 6‐year (2013–2018) continuous carbon and water flux data observed by the eddy covariance system, WUE was calculated by gross ecosystem productivity (GEP)/evapotranspiration (ET). WUE followed a unimodal variation with time during growing seasons in the years without droughts. However, drought disrupted this pattern by its effects on the coupled relationship between carbon and water fluxes. Specifically, droughts showed divergent effects on WUE variations in different periods of the growing seasons. In the early‐growing seasons, droughts induced an increase in WUE. During this period, WUE was mainly regulated by temperature and leaf area index (LAI), and the GEP was low due to the smaller LAI. Therefore, the drought‐induced reduction in GEP was less than that in ET; thus, WUE increased. In the mid‐growing seasons, droughts depressed WUE. WUE was dominated by water conditions and the LAI during this period. When drought occurred, GEP decreased faster than ET, and hence, WUE decreased. In the late‐growing season, WUE was mainly driven by temperature and the LAI, but short‐term drought slightly enhanced WUE. These results are helpful in understanding the responses of fragile alpine ecosystems to future climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.