Abstract

Tree allometry in semi-arid forests is characterized by short height but large canopy. This pattern may be important for maintaining water-use efficiency and carbon sequestration simultaneously, but still lacks quantification. Here we use terrestrial laser scanning to quantify allometry variations of Quercus mongolica in semi-arid forests. With tree height (Height) declining, canopy area (CA) decreases with substantial variations. The theoretical CA-Height relationship in dynamic global vegetation models (DGVMs) matches only the 5th percentile of our results because of CA underestimation and Height overestimation by breast height diameter (DBH). Water supply determines Height variation (P = 0.000) but not CA (P = 0.2 in partial correlation). The decoupled functions of stem, hydraulic conductance and leaf spatial arrangement, may explain the inconsistency, which may further ensure hydraulic safety and carbon assimilation, avoiding forest dieback. Works on tree allometry pattern and determinant will effectively supply tree drought tolerance studying and support DGVM improvements.

Highlights

  • Tree allometry in semi-arid forests is characterized by short height but large canopy

  • We focus on the Height-canopy area (CA)-DBH relationship in semi-arid regions firstly, to test whether it can be represented by the theoretical relationships widely adopted by dynamic global vegetation models (DGVMs)

  • The allometric growth equations Height = 40 × DBH0.5 and CA = 100 × DBH1.6 used in DGVMs can be combined into an equation representing the CA-Height relationship (CA = 7.5 × 10−4 × Height3.2), which results in a value lower than the minimum CA in our results

Read more

Summary

Introduction

Tree allometry in semi-arid forests is characterized by short height but large canopy. This pattern may be important for maintaining water-use efficiency and carbon sequestration simultaneously, but still lacks quantification. Of the carbon sequestration in European forests and the entire global Fluxnet network[4], showing a significantly higher water-use efficiency than that in other ecosystems[5]. The dry climate found in semiarid regions may limit the height growth of trees[8], thereby creating an extreme allometric pattern with short trees but wide canopy. The allometric growth equations Height = 40 × DBH0.5 and CA = 100 × DBH1.6 used in LPJ9,10 can be combined into a theoretical model of the CA-Height relationship (CA = 0.000747 × Height3.2), implying a steeper decrease in tree canopy size with tree height reduction compared with the actual trees in semi-arid forests. All the involving DGVMs may have systematic bias for semi-arid forests carbon sequestration potential due to the simplistic allometric growth module

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.