Abstract

Droughts reduce crop yields, which translates to reduced nutrient uptake or removal from the soil. Under such conditions, residual plant nutrients such as nitrogen (N) and phosphorus (P) can be carried over for subsequent crops. We applied the Agricultural Policy Environmental eXtender (APEX) model to simulate continuous corn (Zea mays L.)/soybean (Glycine max [L.] Merr.) rotations on 3703 farm fields within the Upper Mississippi River Basin (UMRB) over a 47-year timescale: 1960 to 2006. We used the Standardized Precipitation Index (PSI) to identify the drought years between 1960 to 2006, following which we evaluated potential drought-induced carryover N and P nutrients in corn/soybean rotations relative to near normal and very to extremely wet years. Overall, drought reduced N uptake, total N losses, N mineralization and N fixation, the main driver of the soybean carryover N. Given the high cost of fertilizers and concerns over nutrient loss impacts on offsite water quality, farmers are compelled to account for every plant nutrient that is already in the soil. Information from this study could be applied to develop optimal N and P recommendations after droughts, while identification of region-wide potential reductions in N and P applications has implications for conservation efforts aimed at minimizing environmental loading and associated water quality concerns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call