Abstract

Drought causes alterations in the abundance of fungi and bacteria in soil, which could affect community level microbial carbon use efficiency (CUE) and the capacity to store C in soil. We examined drought effects (implemented with rainout shelters) on microbial community composition, enzyme activity, and CUE during a dry summer and wet winter in a seminatural grassland in Australia. Drought caused small increases in CUE in both dry and wet seasons. However, CUE was much higher in the wet winter than in the dry summer. Seasonal variation in CUE were related to changes in microbial community composition where CUE was negatively associated with fungal abundance and fungi:bacteria ratio. Moreover, CUE was negatively related to β-glucosidase and peroxidase activity, suggesting that increased abundance of fungi that invest more C in the production of these enzymes resulted in the reduced CUE. Overall, our results suggest that seasonal variation in CUE could be driven by changes in microbial community composition, and that seasonal effects are larger than effects caused by drought in this grassland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.