Abstract

An initial destabilization of functions triggered by drought stress in plants is followed by acclimatization and acquisition of tolerance; however, knowledge remains limited on drought-mediated changes in plant quality for herbivores. We tested whether a water-stressed fast-growing plant negatively affects host-specialist insects in both sap-sucking and leaf-chewing feeding guilds. Collards (Brassica oleracea var. acephala) were grown in well-watered, slightly water-stressed and severely water-stressed conditions. Decreasing soil moisture adversely affected plant development, assessed as a reduction in leaf number and size, stomatal size and relative water content. Severely stressed plants had less fiber and glucosinolates; however, they showed more total nitrogen and lipids. Larval survival, pupal weight, reproductive rate (Ro) and rate of population growth (r) were lower when the leaf-chewing Plutella xylostella was reared with severely stressed collards. In multiple-choice tests, moths laid fewer eggs on leaf discs of collard that were exposed to drought. The fecundity of the sap-sucking Brevicoryne brassicae was higher and the development of alates was lower when insects were fed on plants kept in well-watered regime as compared to slight-stress and severe-stress. Despite higher nitrogen content and fewer glucosinolates, a higher level of leaf surface wax in severely stressed collards possibly decreased food quality for both herbivores. Thus, host-specific herbivores of different guilds showed similar responses to drought-stressed, fast-growing plants. Water-stressed crops could discourage the attack of specialist insects, but the intensity of the stress that is required to achieve this effect will greatly reduce crop production, in terms of plant growth or foliage increment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call