Abstract

In recent years, several drought events hit Poland, affecting its forests. In Opole, Poland, tons of Pinus sylvestris L. deadwood is removed every year due to drought. Understanding the physiological mechanisms underlying tree vulnerability to drought, and tree responses, is important to develop forest management strategies to face the ongoing climate change. This research provides comprehensive local-scale analyses of the sensitivity of healthy and declining trees to drought. We used dendrochronology and stable isotope analysis to compare five healthy and five declining trees. The analysis focused particularly on comparisons of basal area increment (BAI), δ13C, and intrinsic water-use efficiency (iWUE), as well as tree resistance, resilience, and recovery in response to drought events and sensitivity to selected meteorological parameters. We observed a significant reduction in BAI values in declining trees after 2000. Fifteen years later, the reduction was also visible in the iWUE values of these trees. Despite similar δ13C chronology patterns, declining trees showed higher δ13C correlations with meteorological parameters. We have shown that dendrochronology enables early detection of poor forest health conditions. Differences in iWUE chronologies occurring in recent years suggest that trees of both groups have chosen different adaptive strategies to cope with drought stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call