Abstract

Droughts and other rapid changes in abiotic environmental conditions can predispose trees to damage by pest insects and pathogens. For survival of coniferous trees, functional resin-based defences are essential, and it is important to know how they react to changes in environmental conditions at various time scales.We studied the effects of differing water availabilities on resin-based defences in mature Scots pine (Pinus sylvestris) trees in a naturally drought-prone forest within a long-term irrigation experiment. Our objectives were to understand the effects of long-term drought on carbon allocation to resin production and to analyse its influence on resin flow and pressure in comparison to the shorter-term effects of seasonal drought. We tracked carbon allocation to resin after 13C-pulse labelling experiment in late summer 2017 and compared the observed resin dynamics between drought-exposed control trees and irrigated trees from June to August during the dry hot summer of 2018.Dry control trees showed higher allocation of labelled carbon to resin than irrigated trees. Resin pressure was higher in dry control than in irrigated trees with similar water potentials, and resin flow in June was higher in dry control than in irrigated trees with similar crown transparency. Yet, resin pressures of dry control trees in particular decreased with decreasing water availability from June to August. Resin flow was little affected by short-term changes in water availability and mostly associated with crown transparency. We suggest that because of differing timescales of direct drought effects and changes in allocation patterns, dry conditions may support resin-based defences in the long term, but a drought period decreases resin pressure in the short term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call