Abstract

Droughts have emerged as a global problem in contemporary societies. China suffers from different degrees of drought almost every year, with increasing drought severity each year. Droughts in China are seasonal and can severely impact crops. This study used spatiotemporal trend and characteristics analysis of drought disaster data from 1991 to 2018 in Chinese provinces, in addition to the Mann–Kendall test and wavelet analysis. The drought disaster data included the crop damage area, drought-affected area of the crops, and crop failure area. The outputs of the crops decreased by 10%, 30%, and 80%, respectively. The population with reduced drinking water caused by drought, and the domestic animals with reduced drinking water caused by drought, were numbered in the tens of thousands. The results of the study show that the crop damage areas owing to drought disasters, drought-affected areas of crops, and crop failure areas in China were mainly distributed in the northern, eastern, northeaster, and southwestern regions. The number of people and domestic animals with reduced drinking water owing to drought in China were mainly concentrated in the northern and southwestern regions. These indicators showed a general increasing trend. Tibet, Fujian, Shandong, Jiangsu, Anhui, and Henan provinces and autonomous regions also showed a slightly increasing trend. In particular, the number of domestic animals with reduced drinking water caused by drought in the Inner Mongolia Autonomous Region showed a clear increasing trend with a significant Z-value of 2.2629. The results of this research can be used to provide scientific evidence for predicting future trends in drought and for practising the best management of drought prevention and resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.