Abstract

Global climate change has raised important questions about ecosystem resilience and the likelihood of unexpected and potentially irreversible ecosystem state shifts. Conceptual models provide a framework for generating hypotheses about long-term ecosystem processes and their responses to external perturbations. In this article, we review the classic model of autogenic peatland encroachment into closed-basin kettle lakes (terrestrialization) as well as studies that document patterns of terrestrialization that are inconsistent with this hypothesis. We then present a new conceptual model of episodic, drought-triggered terrestrialization, which is consistent with existing data and provides a mechanism by which climatic variability could cause non-linear patterns of peatland development in these ecosystems. Next, we review data from comparative studies of kettle lakes along a peatland-development gradient to explore potential ecological and biogeochemical consequences of non-linear patterns of terrestrialization. Finally, we identify research approaches that could be used to test conceptual models of terrestrialization, investigate the ecological implications of non-linear patterns of peatland development, and improve our ability to predict responses of kettle systems to climate changes of the coming decades and century.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call