Abstract

Abiotic stresses such as drought and salinity are major environmental factors that influence crop productivity worldwide. These adverse conditions induce osmotic stresses in plant cells by decreasing water availability, thus leading to loss of cell turgor and the accumulation of reactive oxygen species (ROS) that are detrimental to plant growth and development. To survive such harsh environmental conditions, plants must initiate intracellular and physiological signaling networks to rapidly respond and efficiently neutralize these stresses. Inefficient scavenging of ROS would lead to increased levels of cell death, thus inhibiting plant growth and reducing crop productivity. This study investigates the effect of drought and salinity stress on plant growth, water retention, oxidative damage, chlorophyll content, and proline accumulation in sorghum plants. Plant growth, biomass, and leaf chlorophyll were significantly reduced whereas the total proline content was enhanced in response to stress conditions. The significant increase in hydrogen peroxide content as a consequence of stress conditions resulted in augmented levels of lipid peroxidation, which was manifested as extensive cell death and biomass reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.