Abstract

Increased summer drought and wildfires as a consequence of continuing climate change are expected to lead to disturbance of Mediterranean ecosystems. Seedlings recruitment is sensitive to both stresses and, therefore, any adaptation and restoration strategy devised to protect these forests should take into account a careful study on their effects on seedling development. As a substantial fraction of net primary productivity of forested ecosystems is channelled in the belowground compartments, the knowledge of how roots behave under stressful conditions becomes of primary importance to select the right management strategy to be implemented. This work tries to enlighten the events occurring in the fine root portion of the root system in young seedlings of three co-existing oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) under controlled conditions. We have made a comparative analysis of the effect of these two stresses, alone or in combination, with the aim to evaluate the tolerance level of these seedlings and, therefore, to obtain an indication of their recruitment potential in the field. The parameters investigated were biomass and a number of morphological traits. Data obtained suggest that a decrease in diameter could be part of a tolerance strategy in all three oaks tested together with a reduction of root length. In addition, tolerance to water shortage could require a reduction of carbon allocated belowground, in particular in the very fine roots, which leads to an overall reduction of the root system dimension. Q. trojana seedlings seem to be the fastest in resuming growth after stress interruption but a good recovery was also found for the remaining two oak species. Although our study provides interesting information regarding a possible tolerance strategy taking place in the fine root compartment when seedlings of these three oak species undergo water stress and fire treatment, more information is needed before any suggestion can be made as to which species would be best suited to make these forests more resistant to global changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.