Abstract

The rapid development of nanotechnology allowed the fabrication of a wide range of different nanomaterials, raising many questions about their safety and potential risks for the human health and environment. Most of the current nanotoxicology research is not standardized, hampering any comparison or reproducibility of the obtained results. Drosophotoxicology encompasses the plethora of methodological approaches addressing the use of Drosophila melanogaster as a choice organism in toxicology studies. Drosophila melanogaster model offers several important advantages, such as a relatively simple genome structure, short lifespan, low maintenance cost, readiness of experimental manipulation comparative to vertebrate models from both ethical and technical points of view, relevant gene homology with higher organisms, and ease of obtaining mutant phenotypes. The molecular pathways, as well as multiple behavioral and developmental parameters, can be evaluated using this model in lower, medium or high throughput type assays, allowing a systematic classification of the toxicity levels of different nanomaterials. The purpose of this paper is to review the current research on the applications of Drosophila melanogaster model for the in vivo assessment of nanoparticles toxicity and to reveal the huge potential of this model system to provide results that could enable a proper selection of different nanostructures for a certain biomedical application.

Highlights

  • The fast emergence of nanotechnology allowed the obtaining of a wide range of different nanoparticles (NPs) for specific applications in the pharmaceutical, cosmetic, and other biomedical product industries, as wells as for developing imaging diagnosis techniques and photothermal therapy

  • Carbon black or single-walled nanotubes proved an intensive capacity of adherence to fly body surface, impairing the grooming behavior and locomotion and inducing increased mortality. These results show that nanomaterial superstructure and aggregation state influence its toxicity, and the adhesion of NPs to the fly body surface activates the grooming behavior leading to the nanoparticle transport inside the body [35]

  • Due to its well-known genetics, developmental and behavioral characteristics, D. melanogaster represents an ideal model system for the in vivo assessment of NPs’ toxicity, cellular, and subcellular target structures and mechanisms of interaction, providing results that could be reliably extrapolated to mammalian systems and even translated to clinical trials

Read more

Summary

Introduction

The fast emergence of nanotechnology allowed the obtaining of a wide range of different nanoparticles (NPs) for specific applications in the pharmaceutical, cosmetic, and other biomedical product industries, as wells as for developing imaging diagnosis techniques and photothermal therapy. Most of the current nanotoxicology research uses in vitro models that do not offer information about the fate of NPs in the host organisms (biodistribution, accumulation, metabolism, persistence, elimination etc.) [3]. The protocols used in different studies for assessing the nanotoxicity are not standardized regarding the many variables occurring in this field of research (variations in size, fabrication procedures, aggregation, solubility, intracellular uptake, and cellular and animal models). These aspects impede on any comparison or reproducibility of the obtained results, raising the necessity of standardization and of setting up in vitro/in vivo experimental models for the characterization of NPs cytotoxicity and biocompatibility. Establishing of various standard pharmacological parameters, such as dosage, administration route, metabolism, etc. [8,9,10] is required

Objectives
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.