Abstract

Nuclear envelope (NE) budding is a recently described phenomenon wherein large macromolecular complexes are packaged inside the nucleus and extruded through the nuclear membranes. Although a general outline of the cellular events occurring during NE budding is now in place, little is yet known about the molecular machinery and mechanisms underlying the physical aspects of NE bud formation. Using a multidisciplinary approach, we identify Wash, its regulatory complex (SHRC), capping protein and Arp2/3 as new molecular components involved in the physical aspects of NE bud formation in a Drosophila model system. Interestingly, Wash affects NE budding in two ways: indirectly through general nuclear lamina disruption via an SHRC-independent interaction with Lamin B leading to inefficient NE bud formation, and directly by blocking NE bud formation along with its SHRC, capping protein and Arp2/3. In addition to NE budding emerging as an important cellular process, it shares many similarities with herpesvirus nuclear egress mechanisms, suggesting new avenues for exploration in both normal and disease biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call