Abstract

Like many visually active animals, including humans, flies generate both smooth and rapid saccadic movements to stabilize their gaze. How rapid bodysaccades and smooth movement interact for simultaneous object pursuit and gaze stabilization is not understood. We directly observed these interactions in magnetically tethered Drosophila free to rotate about the yaw axis. A moving bar elicited sustained bouts of saccades following the bar, with surprisingly little smooth movement. By contrast, a moving panorama elicited robust smooth movement interspersed with occasional optomotor saccades. The amplitude, angular velocity, and torque transients of bar-fixation saccades were finely tuned to the speed of bar motion and were triggered by a threshold in the temporal integral of the bar error angle rather than its absolute retinal position error. Optomotor saccades were tuned to the dynamics of panoramic image motion and were triggered by a threshold in the integral of velocity over time. A hybrid control model based on integrated motion cues simulates saccade trigger and dynamics. We propose a novel algorithm for tuning fixation saccades in flies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.