Abstract

It is estimated that half of all proteins expressed in eukaryotic cells are transferred across or into at least one cellular membrane to reach their functional location. Protein translocation into the endoplasmic reticulum (ER) is critical to the subsequent localization of secretory and transmembrane proteins. A vital component of the translocation machinery is the signal peptidase complex (SPC) - which is conserved from yeast to mammals – and functions to cleave the signal peptide sequence (SP) of secretory and membrane proteins entering the ER. Failure to cleave the SP, due to mutations that abolish the cleavage site or reduce SPC function, leads to the accumulation of uncleaved proteins in the ER that cannot be properly localized resulting in a wide range of defects depending on the protein(s) affected. Despite the obvious importance of the SPC, in vivo studies investigating its function in a multicellular organism have not been reported. The Drosophila SPC comprises four proteins: Spase18/21, Spase22/23, Spase25 and Spase12. Spc1p, the S. cerevisiae homolog of Spase12, is not required for SPC function or viability; Drosophila spase12 null alleles, however, are embryonic lethal. The data presented herein show that spase12 LOF clones disrupt development of all tissues tested including the eye, wing, leg, and antenna. In the eye, spase12 LOF clones result in a disorganized eye, defective cell differentiation, ectopic interommatidial bristles, and variations in support cell size, shape, number, and distribution. In addition, spase12 mosaic tissue is susceptible to melanotic mass formation suggesting that spase12 LOF activates immune response pathways. Together these data demonstrate that spase12 is an essential gene in Drosophila where it functions to mediate cell differentiation and development. This work represents the first reported in vivo analysis of a SPC component in a multicellular organism.

Highlights

  • Processing by the signal peptidase complex (SPC) is critical to the localization and function of secretory and membrane proteins which must enter the endoplasmic reticulum (ER) before they can be directed to their final destination

  • Our findings show that spase12 mutants are embryonic lethal, while spase12 LOF clones result in developmental defects in all tissues tested

  • We investigated the developmental role of Drosophila Spase12, a signal peptidase complex member

Read more

Summary

Introduction

Processing by the signal peptidase complex (SPC) is critical to the localization and function of secretory and membrane proteins which must enter the endoplasmic reticulum (ER) before they can be directed to their final destination. Sec and Spc3p are required for SPC catalytic function and cell viability. Over-expression of Spc1p attenuates the sec temperature-sensitive phenotype [5], while depletion of Spc2p at high temperatures leads to the accumulation of uncleaved protein [9], suggesting that Spc1p and Spc2p contribute to SPC function in yeast the mechanism has yet to be identified. SPC18, SPC21, and SPC22/23 have catalytic function and the residues required for cleavage activity are localized to the ER lumen [11]. Spase LOF in the Drosophila eye leads to errors in cell differentiation. Together, these data indicate that spase is required for viability, development, and differentiation

Results
Discussion
Findings
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.