Abstract

BackgroundThe majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. In this study, we used a combination of de novo and homology approaches to characterize the Mobilome of two non-model parasitoid wasp species.ResultsThe different methodologies employed for TE characterization recovered TEs with different features as TE consensus number and size. Moreover, some TEs were detected only by one or few methodologies. RepeatExplorer and dnaPipeTE estimated a low TE content of 5.86 and 4.57% for Braconidae wasp and 5.22% and 7.42% for L. boulardi species, respectively. Both mobilomes are composed by a miscellaneous of ancient and recent elements. Braconidae wasps presented a large diversity of Maverick/Polintons Class II TEs while other TE superfamilies were more equally diverse in both species. Phylogenetic analysis of reconstructed elements showed that vertical transfer is the main mode of transmission.ConclusionDifferent methodologies should be used complementarity in order to achieve better mobilome characterization. Both wasps genomes have one of the lower mobilome estimates among all Hymenoptera genomes studied so far and presented a higher proportion of Class II than Class I TEs. The large majority of superfamilies analyzed phylogenetically showed that the elements are being inherited by vertical transfer. Overall, we achieved a deep characterization of the mobilome in two non-model parasitoid wasps improving our understanding of their evolution.

Highlights

  • The majority of Eukaryotic genomes are composed of a small portion of stable genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome

  • We described the mobilome of two non-model organisms, a Braconidae wasp and L. boulardi wasp species showing that they have a diverse mobilome and a mixture of ancient and young elements

  • We detected several Transposable elements (TEs) superfamilies not described before for those species, showed that Maverick/Polintons compose an abundant genomic component in Pteromalidae and Braconidae wasps, revisited some TE superfamily phylogeny showing that most of the wasps TEs are evolving vertically and evidenced that the two wasps mobilomes investigated here have a miscellaneous of ancient and young elements which likely contribute to the intragenomic dynamics of such understudied taxa [68,69,70]

Read more

Summary

Introduction

The majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. Genome-wide non-model organisms studies are revealing different genomic parasites/host dynamics which differ substantially from the most studied ones It highlights that our current view of genome and mobilome evolution focusing on few well-studied species is likely biased

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call