Abstract

BackgroundEncoding of olfactory information in insects occurs in the antennal lobe where the olfactory receptor neurons interact with projection neurons and local interneurons in a complex sensory processing circuitry. While several studies have addressed the developmental mechanisms involved in specification and connectivity of olfactory receptor neurons and projection neurons in Drosophila, the local interneurons are far less well understood.ResultsIn this study, we use genetic marking techniques combined with antibody labelling and neuroblast ablation to analyse lineage specific aspects of local interneuron development. We find that a large set of local interneurons labelled by the GAL4-LN1 (NP1227) and GAL4-LN2 (NP2426) lines arise from the lateral neuroblast, which has also been shown to generate uniglomerular projection neurons. Moreover, we find that a remarkable diversity of local interneuron cell types with different glomerular innervation patterns and neurotransmitter expression derives from this lineage. We analyse the birth order of these two distinct neuronal types by generating MARCM (mosaic analysis with a repressible cell marker) clones at different times during larval life. This analysis shows that local interneurons arise throughout the proliferative cycle of the lateral neuroblast beginning in the embryo, while uniglomerular projection neurons arise later during the second larval instar. The lateral neuroblast requires the function of the cephalic gap gene empty spiracles for the development of olfactory interneurons. In empty spiracles null mutant clones, most of the local interneurons and lateral projection neurons are lacking. These findings reveal similarities in the development of local interneurons and projection neurons in the olfactory system of Drosophila.ConclusionWe find that the lateral neuroblast of the deutocerebrum gives rise to a large and remarkably diverse set of local interneurons as well as to projection neurons in the antennal lobe. Moreover, we show that specific combinations of these two neuron types are produced in specific time windows in this neuroblast lineage. The development of both these cell types in this lineage requires the function of the empty spiracles gene.

Highlights

  • Encoding of olfactory information in insects occurs in the antennal lobe where the olfactory receptor neurons interact with projection neurons and local interneurons in a complex sensory processing circuitry

  • We show that the local interneuron (LN) are born throughout the proliferative divisions of the lateral lineage and uniglomerular lateral projection neuron (PN) are generated during later divisions

  • All the cells labelled with GAL4-LN1 as well as the lateral population labelled with GAL4-LN2 had a single neurite, which extended from the cell body into the glomerular neuropile where it arborised widely in several glomeruli

Read more

Summary

Introduction

Encoding of olfactory information in insects occurs in the antennal lobe where the olfactory receptor neurons interact with projection neurons and local interneurons in a complex sensory processing circuitry. The insect counterpart of the vertebrate olfactory bulbs, are the primary centres for olfactory processing. They are subdivided into individual glomeruli, which are typical of primary olfactory systems in many animals (Figure 1A). Olfactory receptor neurons (ORNs) from the olfactory sense organs make synapses with two major types of olfactory interneurons in the antennal lobes, namely the projection neurons (PNs) and the local interneurons (LNs). LNs are intrinsic interneurons, which, together with ORNs and PNs, establish a complex synaptic network in the antennal lobe characterised by diverse interglomerular connectivity patterns (Figure 1B)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call