Abstract

Nesprin-1 is a core component of a protein complex connecting nuclei to cytoskeleton termed LINC (linker of nucleoskeleton and cytoskeleton). Nesprin-1 is anchored to the nuclear envelope by its C-terminal KASH domain, the disruption of which has been associated with neuronal and neuromuscular pathologies, including autosomal recessive cerebellar ataxia and Emery-Dreifuss muscular dystrophy. Here, we describe a new and unexpected role of Drosophila Nesprin-1, Msp-300, in neuromuscular junction. We show that larvae carrying a deletion of Msp-300 KASH domain (Msp-300 (∆KASH) ) present a locomotion defect suggestive of a myasthenia, and demonstrate the importance of muscle Msp-300 for this phenotype, using tissue-specific RNAi knock-down. We show that Msp-300 (∆KASH) mutants display abnormal neurotransmission at the larval neuromuscular junction, as well as an imbalance in postsynaptic glutamate receptor composition with a decreased percentage of GluRIIA-containing receptors. We could rescue Msp-300 (∆KASH) locomotion phenotypes by GluRIIA overexpression, suggesting that the locomotion impairment associated with the KASH domain deletion is due to a reduction in junctional GluRIIA. In summary, we found that Msp-300 controls GluRIIA density at the neuromuscular junction. Our results suggest that Drosophila is a valuable model for further deciphering how Nesprin-1 and LINC disruption may lead to neuronal and neuromuscular pathologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.