Abstract

Author SummaryIn spite of continuous challenges from the ever-changing environment, biological systems exhibit incredible stability in their developmental and physiological processes. In addition to extrinsic variability caused by environmental fluctuations, cells face intrinsic variability arising from the inherent noise of gene expression and of other molecular processes. microRNAs, which act as post-transcriptional regulators of gene expression, are beginning to be recognized for their ability to confer robustness to biological systems by buffering the effects of noisy gene expression. Although noise often is viewed as destabilizing, some biological processes make use of noise in order to make stochastic decisions. In this paper, we describe a role for microRNAs in preventing the stochastic elimination of excess cells in the developing fly retina. After the sense organs that make up the eye have been specified, pruning of excess cells occurs through the action of the gene hid, the expression of which triggers cell death. Specific mechanisms are needed to protect specialized cells which need to be maintained to ensure that only excess cells are eliminated. We report that a pair of related microRNAs, miR-263a/b, protect sense organs during this pruning process by directly acting upon and limiting the expression of the proapoptotic gene hid. This example, illustrates a novel function for miRNAs in ensuring developmental robustness during apoptotic tissue pruning.

Highlights

  • Organogenesis requires the organization of different cell types into precise spatial patterns

  • In addition to extrinsic variability caused by environmental fluctuations, cells face intrinsic variability arising from the inherent noise of gene expression and of other molecular processes. microRNAs, which act as post-transcriptional regulators of gene expression, are beginning to be recognized for their ability to confer robustness to biological systems by buffering the effects of noisy gene expression

  • We describe a role for microRNAs in preventing the stochastic elimination of excess cells in the developing fly retina

Read more

Summary

Introduction

Organogenesis requires the organization of different cell types into precise spatial patterns. The Drosophila compound eye has proven to be a useful model system in which to investigate how such ordered patterns are established and maintained. The mature retina consists of ,750 regular units, called ommatidia. Each ommatidium consists of eight photoreceptors, four cone cells, and two primary pigment cells. Individual ommatidia are separated by a layer of secondary and tertiary pigment cells. The ‘‘interommatidial’’ lattice includes sense organs called interommatidial bristles (IOB). The IOB are mechanosensory hair cells, which may help the fly to avoid damage to the eye surface. IOB develop from a distinct set of sensory organ precursors (SOP), specified at discrete positions among the array of interommatidial cells [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call