Abstract
Laboratory populations of D. melanogaster have been subjected to selection for survival after live spores of B. cereus were introduced as a pathogenic agent. The present study was designed to investigate correlated traits: respiration as a metabolic trait and movement as a behavioral trait. An underlying hypothesis was that the evolution of increased survival after B. cereus infection exerts a metabolic cost associated with elevated immunity and this would be detected by increased respiration rates. There was support for this hypothesis in the male response to selection, but not for selected-line females. Two phenotypic effects were also observed in the study. Females especially showed a marked increase in respiration after mating compared to the other assay stages regardless of whether respiration was measured per fly or adjusted by lean mass or dry weight. Given that mating stimulates egg production, it is feasible that elevated metabolism was needed to provision oocytes with yolk. Females also moved less than males, perhaps due to behaviors related to oviposition whereas elevated male activity might be due to behaviors associated with seeking females and courtship. Relatively low movement of females indicated that their elevated respiration after mating was not due to a change in locomotion.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.