Abstract

The NAD+ + acetone-induced isoenzyme conversion of the Drosophila melanogaster AdhS alleloenzyme was studied. Absorption and fluorescence spectra as well as electrophoretic and kinetic methods show that the conversion process proceeds through three steps. Initially a binary enzyme-NAD+ complex is formed, followed by a ternary enzyme-NAD+-acetone complex with a KEO,Ac of 1.7 M. The last step is a rate-limiting irreversible process in which NAD+ and acetone are covalently linked to the enzyme. A Vm of 2.4 min-1 was obtained at pH 8.6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.