Abstract

Recent developments in biologyhave produced a large number of gene expression patterns, many of which have been annotated textually with anatomical and developmental terms. These terms spatially correspond to local regions of the images, which are attached collectively to groups of images. Because one does not know which term is assigned to which region of which image in the group, the developmental stage classification and anatomical term annotation turn out to be a multi-instance learning (MIL) problem, which considers input as bags of instances and labels are assigned to the bags. Most existing MIL methods routinely use the Bag-to-Bag (B2B) distances, which, however, are often computationally expensive and may not truly reflect the similarities between the anatomical and developmental terms. In this paper, we approach the MIL problem from a new perspective using the Class-to-Bag (C2B) distances, which directly assesses the relations between annotation terms and image panels. Taking into account the two challenging properties of multi-instance gene expression data, high heterogeneity and weak label association, we computes the C2B distance by introducing class specific distance metrics and locally adaptive significance coefficients.We apply our new approach to automatic gene expression pattern classification and annotation on the Drosophila melanogaster species. Extensive experiments have demonstrated the effectiveness of our new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.