Abstract

Drosophila melanogaster has been a widely used as a model system for its powerful genetic tools. However, it remains to be illustrated if Drosophila can be used to examine the biochemical and physiological metabolism of eicosanoids. Thus, the analysis on the metabolism of C20 polyunsaturated fatty acids (PUFA) in Drosophila was implemented with high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Fatty acid (FA) analysis of the whole body, head, and thorax-abdomen in Drosophila showed C20 PUFA could only be found in Drosophila fed diets supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA), but not in Drosophila fed base diets. The C20 PUFA were found in abundance in the head. Drosophila fed ARA- and EPA-supplemented diets yielded 15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid [15(S)-HETE] and 15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid [15(S)-HEPE], respectively, while other sampled eicosanoids could not be detected. Similar results were obtained by incubating fly tissue supplemented with ARA or EPA. Furthermore, a genome sequence scan indicated that no gene encoding the key enzymes synthesizing eicosanoids were found in Drosophila. These findings demonstrate that Drosophila may possess a special lipid metabolic system, which is different from mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.