Abstract

Drosophila Ebony is a β-alanyl biogenic amine synthetase with proven function in cuticle and in glia of the nervous system. It is closely related to nonribosomal peptide synthetases (NRPSs), which typically consist of at least an adenylation, a peptidyl carrier protein and a peptide bond forming condensation domain. Besides its role in cuticle formation, Ebony is in most glia of the brain thought to convert biogenic amines to β-alanyl conjugates. If the metabolization of the neurotransmitter histamine to β-alanyl histamine requires a fast reaction in visual signal transduction, Ebony must be able to fulfill this requirement. Since NRPSs are in general slowly acting multi-modular protein machineries, the enigma of how Ebony quickly facilitates this inactivation remains a key question for understanding its role in vision. To quantitatively analyze the reaction kinetics, we used phosphopantetheinylated holo-Ebony prepared from Baculovirus infected Sf9 cells. Kinetic parameters for the loading reaction, e.g. the formation of β-alanyl-Ebony thioester, complied with those of slow NRPSs. In contrast, single-turnover analysis of the last reaction step, peptide bond formation between pre-activated β-alanyl Ebony thioester and histamine, revealed a very rapid conjugation reaction. This biphasic nature of activity identifies Ebony as a novel type of NRPS related molecule that combines a slow amino acid activation phase with a very fast product formation step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.