Abstract

Body temperature rhythm (BTR) is fundamental for the maintenance of functions essential for homeostasis, such as generating metabolic energy and sleep. One major unsolved question is how body temperature decreases dramatically during the night. Previously, we demonstrated that a BTR-like mechanism, referred to as temperature preference rhythm (TPR), exists in Drosophila Here, we demonstrate that the diuretic hormone 31 (DH31) neuropeptide and pigment-dispersing factor receptor (PDFR) regulate preferred temperature decreases at night-onset via dorsal neurons 2. This is the first in vivo evidence that DH31 could function as a ligand of PDFR. Although both DH31 and PDF are ligands of PDFR, we show that DH31 regulates night-onset TPR, but PDF does not, suggesting that night-onset TPR and locomotor activity rhythms are controlled by different neuropeptides via different clock cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call