Abstract

The damaged DNA-binding protein (DDB) complex, thought to recognize (6-4) photoproducts and other lesions in DNA, has been implicated to have a role in global genomic nucleotide excision repair (NER) and E2F-1-mediated transcription. The complex consists of a heterodimer of p127 (DDB1) and p48 (DDB2), the latter also being known as XPE. We reported previously that in Drosophila expression of the DDB1 (D-DDB1) gene is controlled by the DRE/DREF system, and external injury to DNA is not essential for D-DDB1 function. In the present study of the function of D-DDB1 in a multicellular system, we prepared transgenic flies, which were knocked down for the D-DDB1 gene due to RNA interference (RNAi), and performed immunocytochemistry to ascertain the distribution of D-DDB1 in the eye imaginal disc. It was found to be abundant in the anterior of the morphogenetic furrow (MF). Whole-body overexpression of dsRNA of D-DDB1 in Drosophila using a GAL4-UAS targeted expression system induced melanotic tumors and caused complete lethality. When limited to the eye imaginal disc, a severe rough eye phenotype resulted. Correspondingly, all of the D-DDB1 gene knocked-out flies also died. D-DDB1 therefore appears to be an essential development-associated factor in a multicellular organism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call