Abstract

The evolutionarily conserved CLASPs (cytoplasmic linker-associated proteins) are microtubule-associated proteins that inhibit microtubule catastrophe and promote rescue. CLASPs can regulate axonal elongation and dendrite branching in growing neurons. However, their roles in microtubule orientation and neurite pruning in remodeling neurons remain unknown. Here, we identify the Drosophila CLASP homolog Orbit/MAST, which is required for dendrite pruning in ddaC sensory neurons during metamorphosis. Orbit is important for maintenance of the minus-end-out microtubule orientation in ddaC dendrites. Our structural analysis reveals that the microtubule lattice-binding TOG2 domain is required for Orbit to regulate dendritic microtubule orientation and dendrite pruning. In a genetic modifier screen, we further identify the conserved Par-1 kinase as a suppressor of Orbit in dendritic microtubule orientation. Moreover, elevated Par-1 function impairs dendritic microtubule orientation and dendrite pruning, phenocopying orbit mutants. Overall, our study demonstrates that Drosophila CLASP governs dendritic microtubule orientation and dendrite pruning at least partly via suppressing Par-1 kinase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.