Abstract
Two species of apurinic/apyrimidinic (AP) endonuclease have been purified approximately 400-fold from extracts of Drosophila embryos. AP endonuclease I, which flows through phosphocellulose columns, has an apparent subunit molecular weight of 66,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas AP endonuclease II, which is retained by phosphocellulose, has a subunit molecular weight of 63,000. The molecular weight determinations were made possible in part by the finding that both Drosophila enzymes, along with Escherichia coli endonuclease IV, cross-react with an antibody prepared toward a human AP endonuclease (Kane, C. M., and Linn, S. (1981) J. Biol. Chem. 256, 3405-3414). The nature of phosphodiester bond breaks produced by the two partially purified AP endonucleases from Drosophila have been investigated. Nicks introduced into partially depurinated PM2 DNA by Drosophila AP endonuclease I did not support DNA synthesis by E. coli DNA polymerase I, whereas nicks created by AP endonuclease II were able to support DNA synthesis, but at a rate far less than that observed for nicks introduced by E. coli endonuclease IV. The priming activity of DNA incised by either of the Drosophila enzymes can be enhanced, however, by an additional incubation with E. coli endonuclease IV, which is known to cleave depurinated DNA on the 5'-side of an apurinic site. These results suggest that the Drosophila enzymes cleave depurinated DNA on the 3'-side of the apurinic site. This suggestion was strengthened by the observation that the combined action of AP endonuclease II and E. coli endonuclease IV resulted in the removal of [32P]dAMP from partially depyrimidinated [dAMP-5'-32P,uracil-3H]poly(dA-dT). Taken together, these results propose that Drosophila AP endonuclease II produces 3'-deoxyribose and 5'-phosphomonoester nucleotide termini. Conversely, the absolute inability to detect priming activity for DNA cleaved by AP endonuclease I alone suggested a different mechanism, possibly the formation of a deoxyribose-3'-phosphate terminus. When apurinic DNA cleaved by AP endonuclease I was subsequently treated with bacterial alkaline phosphatase, DNA synthesis was now detected at levels similar to that observed for AP endonuclease II alone. Additionally, DNA nicked by AP endonuclease I was susceptible to 5'-end labeling by polynucleotide T4 kinase without prior phosphomonoesterase treatment. These results suggest that AP endonuclease I forms deoxyribose 3'-phosphate and 5'-OH termini upon cleaving depurinated DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.