Abstract

AbstractAn inverse problems method is applied to a two‐phase liquid–liquid system in a rotating disc contactor (RDC). The dispersed phase is modeled by population balance equations, which are solved by a Monte Carlo method, together with the equations for the parametric derivatives of the solution with respect to the parameters of the model. The best‐fitting problem is solved by a gradient search method. Because the inverse problem is ill‐posed, the iteration procedure is augmented by an appropriate termination criterion to stabilize the calculations. The parametric derivatives of the solution can be used to quantify the relative importance of different parameters of the model. It is shown that the model's parameters, which are identified on one set of the experimental data, adequately describe the behavior of the system under another unfitted operation condition, that is, the proposed method can be applied to scale‐up problems. © 2005 American Institute of Chemical Engineers AIChE J, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.