Abstract

A model has been developed for non-convective vaporization of liquid fuel droplets in an environment above the liquid critical pressure and near or above the liquid critical temperature. The model employs conservation of mass, energy and chemical species, along with transport properties which vary with temperature and species concentration. The liquid interface is assumed to be in thermodynamic equilibrium. The interface problem is solved using the Gibbs-Duhem relationship, and evaluating mixture fugacities using a modified Redlich-Kwong equation of state for the mixture. Due to the limited range of this equation, a curve-fit equation of state suitable for conditions far from the liquid critical point was applied. Results are presented for an n-octane liquid drop in nitrogen gas. For two gas conditions, several droplet sizes are modeled. Results include droplet size histories, surface temperature histories, and liquid and gas phase temperature profiles. The liquid vaporization rate is increased significantly for supercritical conditions compared to subcritical conditions. Using the specified equation of state for the ambient conditions tested, the droplet is completely vaporized before the liquid surface is heated to the liquid critical temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call