Abstract

When a droplet of fluid is deposited on a surface with chemical and/or topological patterns, its static shape is highly dependent on the 2D distribution of the patterns. In the case of chemical stripes, three distinct spreading regimes have been observed as a function of wettability contrast between the two kind of stripes. For low wettability contrast, the droplet spreads with the same [corrected] velocity normal and parallel to the stripes [corrected] and the macroscopic contact angle is close to Cassie's contact angle. When the wettability contrast is intermediate/high, the resulting shape of the droplets is elongated. In the intermediate wettability contrast regime, an ideal situation shows stick and slip behavior of the contact line, during which the contact line jumps from one stripe to another. For a high wettability contrast, the confinement of the fluid between two chemical stripes leads to a 2D spreading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call