Abstract

Abstract Recent studies have indicated that droplet evaporation heat transfer can be substantially enhanced by fabricating a thin nanoporous superhydrophilic layer on a metal substrate. Earlier investigations have focused on how these surfaces affect low Weber number deposition of droplets and their subsequent evaporation on a horizontal, upward-facing heated surface. This investigation explores the effects of changing impact parameters — specifically how deposition, spreading, and vaporization on nanoporous superhydrophilic surfaces are affected by changing impact velocity and incident angle of the droplet motion relative to the surface. The results of droplet deposition and evaporation experiments are reported here for multiple droplet sizes (2–6 μL), and multiple incident angles (0–45°), and of 8 μL droplets from different drop heights (1.2, 40, and 80 mm). The results indicate that the strong capillary forces that enhance spreading on these surfaces remain dominant in the spreading and vaporization processes even when droplets strike the surface with significant velocity, and when the incident angle is oblique. The results indicate that increasing the Weber number has little effect on droplet evaporation and decreasing the incident deposition angle further enhances spreading and evaporation heat transfer. This paper also explores the implications of these results for spray cooling applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.