Abstract
The shape of liquid droplets in air plays an important role in the aerodynamic behavior and combustion dynamics of miniaturized propulsion systems such as microsatellites and small drones. Their precise manipulation can yield optimal efficiency in such systems. It is desired to have a minimal representation of droplet shapes using as few parameters as possible to automate shape manipulation using self-learning algorithms, such as reinforcement learning. In this paper, we use a neural compression algorithm to represent, with only two parameters, elliptical and bullet-shaped droplets initially represented with 200 points (400 real numbers) at the droplet boundary. The mapping of many to two points is achieved in two stages. Initially, a Fourier series is formulated to approximate the contour of the droplet. Subsequently, the coefficients of this Fourier series are condensed to lower dimensions utilizing a neural network with a bottleneck architecture. Finally, 5000 synthetically generated droplet shapes were used to train the neural network. With a two-real-number representation, the recovered droplet shapes had excellent overlap with the original ones, with a mean square error of ∼10−3. Hence, this method compresses the droplet contour to merely two numerical parameters via a fully reversible process, a crucial feature for rendering learning algorithms computationally tractable.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.