Abstract

Driving droplets by electric fields is usually achieved by controlling their wettability, and realizing a flexible operation requires complex electrode designs. Here, we show by molecular dynamics methods the droplet transport on hydrophobic surfaces in a rolling manner under a rotating electric field, which provides a simpler and promising way to manipulate droplets. The droplet internal velocity field shows the rolling mode. When the contact angle on the solid surface is 144.4°, the droplet can be transported steadily at a high velocity under the rotating electric field (E = 0.5 V nm-1, ω = π/20 ps-1). The droplet center-of-mass velocities and trajectories, deformation degrees, dynamic contact angles, and surface energies were analyzed regarding the electric field strength and rotational angular frequency. Droplet transport with a complex trajectory on a two-dimensional surface is achieved by setting the electric field, which reflects the programmability of the driving method. Nonuniform wettability stripes can assist in controlling droplet trajectories. The droplet transport on the three-dimensional surface is studied, and the critical conditions for the droplet passing through the surface corners and the motion law on the curved surface are obtained. Droplet coalescence has been achieved by surface designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.