Abstract

Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.