Abstract
An axisymmetric numerical model is conducted to study the droplet impingement into a liquid film and crown formation. Through numerical modeling and experimental validation, the effect of different parameters such as surface tension, Weber number, and film thickness on crown evolution is investigated. Surfactant is added to water, aiming reduction of the surface tension in the surfactant-water mix. It was shown that the crown rim diameter increases with Weber in both water and surfactant-water mixture cases. Likewise, crown rim diameter increases with the film thickness in both different cases of fluids. Additionally, results revealed that surface tension does not affect the crown rim diameter. Nevertheless, crown height increases as surface tension decreases. At low values of surface tension, secondary droplets and the de-wetting region appear. These outcomes can be attributed to the domination of kinetic energy of crown rims in cases with low surface tensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.