Abstract

The transition boundaries of various regimes characterizing the impact outcomes of a droplet upon a liquid layer of small thickness were investigated experimentally. With careful control of film thickness, the onset of these regimes in terms of a Weber number (We), which expresses the ratio between the droplet inertia and surface force, specifically when the layer depth is smaller than the droplet diameter, has been further clarified, as compared to prior studies. Several turning, non-monotonic trends between We and the film thickness normalized by the droplet diameter, H, were thus identified as H≲1. Furthermore, by adding various percentages of glycerine, the effects of liquid viscosity were revealed, which inhibited disintegration into secondary droplets. We also added surfactant to change the surface tension, leading to further complication of the collision outcome that would be related to the interaction between the crater and the bottom surface. The material effect of the solid surface was hence studied for further demonstration of such interplays. The results showed that increasing viscosity would essentially delay the occurrence of these transitions whereas reducing surface tension might encourage the onset. Therefore a possibility of using additives to manipulate the collision outcomes, while not changing much the constituent fluid properties, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.