Abstract

Droplet formation from a flexible nozzle plate driven by a prescribed-waveform excitation of a piezoelectric is numerically investigated using a computational fluid dynamics (CFD) model with the VOF method. The droplet generator with a flexible nozzle plate, which is free to vibrate due to the pressure acting on the plate, is modeled in a CFD computational domain. The CFD analysis includes the fluid-structure interaction between fluid and a flexible plate using large deflection theory. The problem is characterized by the nondimensional variables based on the capillary parameters of time, velocity, and pressure. The CFD model is validated with the experiment results. This study examines the characteristics of the applied waveforms and nozzle plate material properties to change the vibrational characteristics of the nozzle plate. The effect of fluid properties on the droplet formation process is also investigated focusing on surface tension and viscous forces. The mechanism of the droplet formation excited by a drop-on-demand piezoelectric waveform is investigated using a step-function and a pulse waveform. The piezoelectric displacement plays an important role in generating either forward-driven momentum or a suction pressure inside the chamber. For the step-function waveform, the nondimensional applied impulse is defined and used to characterize the post-breakoff droplet volume. Increasing the impulse of the piezoelectric can be used to cause a faster droplet velocity and it is shown that the vibration of the nozzle plate has a strong effect on the droplet velocity, shape, and volume. Surface tension has strong influence to the droplet formation characteristics which is contrast to a viscous force that makes no difference on the droplet formation for different viscosities. For the combination of a fluid with high surface tension and the most flexible nozzle plate, this system can not cause the droplet ejected out of the nozzle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call