Abstract

The emission of jet engines is strongly affected by the fuel preparation process. Due to stringent emission standards, the development of low emission combustor concepts, like lean premixed prevaporized combustion or rich quench lean burn, is an important goal. For the design process of advanced combustors, numerical methods become more and more important. In order to provide an accurate prediction of the fuel preparation process, an exact numerical prediction of thermophysical processes is crucial. A numerically effective fuel droplet evaporation model is presented in the present paper which accounts for the description of multi-component fuels like kerosene. Fractional boiling is described by a single process variable: the molar weight. This way, the fractional distillation process during evaporation of kerosene droplets is taken into account. In addition, a novel method for modeling the properties of the fuel is provided: the property data are supplied as a function of the molar weight. Real gas effects are also taken into account, in order to achieve an accurate prediction at elevated pressures. The major advantage of this new model is that algebraic expressions are derived for the multi-component droplet vaporization. Thus, the present model combines both numerical efficiency and accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call