Abstract

Organoids are expected to function as effective human organ models for precision cancer studies and drug development. Currently, primary tissue-derived organoids, termed non-engineered organoids (NEOs), are produced by manual pipetting or liquid handling that compromises organoid-organoid homogeneity and organoid-tissue consistency. Droplet-based microfluidics enables automated organoid production with high organoid-organoid homogeneity, organoid-tissue consistency, and a significantly improved production spectrum. It takes advantage of droplet-encapsulation of defined populations of cells and droplet-rendered microstructures that guide cell self-organization. Herein, we studied the droplet-engineered organoids (DEOs), derived from mouse liver tissues and human liver tumors, by using transcriptional analysis and cellular deconvolution on bulk RNA-seq data. The characteristics of DEOs are compared with the parental liver tissues (or tumors) and NEOs. The DEOs are proven higher reproducibility and consistency with the parental tissues, have a high production spectrum and shortened modeling time, and possess inter-organoid homogeneity and inter-tumor cell heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.