Abstract

The results of previous studies of the water droplet dynamics on a horizontal surface blown by air are briefly reviewed. The experiments were carried out on rectangular wing model profile as an example. The inclined plane method was used to measure the limiting hysteresis of the contact angle with respect to the surface properties. The values of the flow velocity at which the drop begins to move are found. The dependence of the drop velocity on its characteristic size and air velocity is obtained. A theoretical description of the drop dynamics is given, and a semiempirical expression for its velocity is proposed. The developed experimental-theoretical algorithm can be used for a wider range of control parameters (surface tension coefficient of the fluid, contact angle, gas flow velocity, droplet size).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.