Abstract

This paper experimentally investigates the mechanism of water droplet detachment in a confined microchannel under highly inertial (10 < Re < 200) air flow conditions. Experimental observations show that as the Reynolds number of the continuous phase is increased, the droplet transitions from an elongated slug to a nearly uniform aspect ratio droplet. Supporting scaling arguments are then made that examine the relevant forces induced by the continuous phase on the droplet at the point of detachment. The inertial, viscous, and hydrodynamic pressure forces that result as the air flow is confined in the small gap between droplet and channel walls are compared to the surface tension force pinning the droplet at the injection site. The results indicate that the dominant detachment mechanism transitions from the hydrostatic pressure difference to inertial drag as the continuous phase velocity is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.